合作客戶(hù)/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 微量天平高靈敏測(cè)定雞肉中磺胺類(lèi)藥物含量
> 表面張力儀的校準(zhǔn)方法
> 強(qiáng)紫外線(xiàn)輻射對(duì)減縮劑抑制水泥石干縮變形效果研究(一)
> 助劑對(duì)乙基多殺菌素藥液在杧果葉片潤(rùn)濕鋪展行為、表面張力的影響——結(jié)果與分析
> 東辛原油酸性活性組分油水界面張力、動(dòng)態(tài)界面擴(kuò)張流變性質(zhì)研究(一)
> 放心喝!張家界6處地下水水源地水質(zhì)達(dá)標(biāo)
> 央視CCTV13:普通石化類(lèi)洗潔劑含有毒害物質(zhì)對(duì)身體危害極大
> 表面張力的意義,醇類(lèi)在不同溫度下的表面張力測(cè)定數(shù)據(jù)
> 聚氧乙烯醚磺酸鹽類(lèi)表面活性劑支鏈化可降低界面張力
> 連鑄結(jié)晶器內(nèi)渣鋼兩相表面張力和界面張力的演變行為與機(jī)制
推薦新聞Info
-
> 如何提高非離子表面活性劑的表面張力預(yù)測(cè)精度
> 不同水淹程度的油藏環(huán)境下微生物提高采收率、采出液的表面張力與界面張力的變化(二)
> 不同水淹程度的油藏環(huán)境下微生物提高采收率、采出液的表面張力與界面張力的變化(一)
> 新型助排劑配方組分、對(duì)表/界面性能的影響及助排效果(三)
> 新型助排劑配方組分、對(duì)表/界面性能的影響及助排效果(二)
> 新型助排劑配方組分、對(duì)表/界面性能的影響及助排效果(一)
> 電噴霧質(zhì)譜離子源技術(shù)優(yōu)化策略:降低外鞘液表面張力,加速液滴溶劑蒸發(fā)
> 4種油醇烷氧基化物平衡和動(dòng)態(tài)表面張力、潤(rùn)濕性、泡沫性、乳化性質(zhì)研究(四)
> 4種油醇烷氧基化物平衡和動(dòng)態(tài)表面張力、潤(rùn)濕性、泡沫性、乳化性質(zhì)研究(三)
> 4種油醇烷氧基化物平衡和動(dòng)態(tài)表面張力、潤(rùn)濕性、泡沫性、乳化性質(zhì)研究(二)
水與瓦斯煤之間的表面張力計(jì)算方法及動(dòng)態(tài)潤(rùn)濕機(jī)理研究(二)
來(lái)源: 煤炭學(xué)報(bào) 瀏覽 52 次 發(fā)布時(shí)間:2025-06-23
2.水與瓦斯之間的表面張力
采用團(tuán)隊(duì)自開(kāi)發(fā)的水與瓦斯之間的表面張力分析軟件對(duì)不同瓦斯壓力條件下的水滴形貌(圖3)進(jìn)行分析,即可獲得式(1)中的Ds及De。F為G修正后的形狀因子,F(xiàn)通過(guò)查表及插值法獲得,式(1)中的參數(shù)見(jiàn)表1,將表1中的參數(shù)帶入式(1)及式(2),即可獲得不同瓦斯壓力條件下水與瓦斯之間的表面張力(圖4)。
圖3不同瓦斯壓力條件下的水滴形貌
表1式(1)及式(2)中的參數(shù)
圖4不同瓦斯壓力條件下水的表面張力
由圖4可知,水與瓦斯之間的表面張力隨著瓦斯壓力的增加而減小,表面張力與瓦斯壓力滿(mǎn)足負(fù)指數(shù)的關(guān)系,如式(3)所示。在水與瓦斯的界面,水分子兩側(cè)分別與瓦斯分子、液體分子接觸,表面分子受到的朝向液體內(nèi)部的吸引力大于氣體分子的吸引力。隨著瓦斯壓力的增加,水與瓦斯接觸表面之間的密度差逐漸減小,瓦斯分子對(duì)水分子的引力逐漸變大,抑制了液體表面分子向液體內(nèi)部的運(yùn)動(dòng),使系統(tǒng)的能量趨向于平衡狀態(tài)。因此,水與瓦斯之間的表面張力隨著瓦斯壓力的增加而減小。
3.含瓦斯煤與水之間接觸動(dòng)態(tài)演化特性
3.1含瓦斯煤與水之間接觸角動(dòng)態(tài)演化特性
按照“含瓦斯煤與水之間接觸角測(cè)試實(shí)驗(yàn)流程”對(duì)含瓦斯煤與水之間的動(dòng)態(tài)接觸角進(jìn)行測(cè)試。不同瓦斯壓力下煤與水之間動(dòng)態(tài)接觸角測(cè)試結(jié)果如圖5所示。
圖5不同瓦斯壓力下煤與水之間動(dòng)態(tài)接觸角
由圖5可知,同一瓦斯壓力下,接觸角隨著時(shí)間的增加而逐漸減小,說(shuō)明水分在含瓦斯煤表面發(fā)生了浸潤(rùn)現(xiàn)象。接觸角θ與時(shí)間t滿(mǎn)足的關(guān)系,參數(shù)a和b的值如圖6所示。參數(shù)a與壓力p滿(mǎn)足的關(guān)系,參數(shù)b與壓力p滿(mǎn)足的關(guān)系。接觸角與壓力及時(shí)間的關(guān)系如式(4)所示。
3.2煤水界面能、煤的表面能及黏附功的動(dòng)態(tài)演化規(guī)律
同一時(shí)刻,隨著瓦斯壓力的增加,煤與水之間的接觸角變大,由于水與瓦斯之間的表面張力隨著瓦斯壓力的增加而減小,無(wú)法定性的判斷水分對(duì)含瓦斯煤的潤(rùn)濕特性。判斷潤(rùn)濕性能的指標(biāo)有煤水界面能、煤的表面能及黏附功,其計(jì)算公式分別如式(5)—式(7)所示。不同瓦斯壓力條件下的煤水界面能、煤的表面能及黏附功的計(jì)算結(jié)果,如圖7a—圖7c所示。
圖7不同瓦斯壓力條件下煤水界面能、煤的表面能及黏附功的動(dòng)態(tài)演化規(guī)律
式中:γlg為水的表面張力,N/m;θ為接觸角,(°);為煤水界面能,N/m;γsg為煤的表面能,N/m;Wa為黏附功,N/m。
由圖7a可知,同一瓦斯壓力條件下,煤水界面能隨著潤(rùn)濕時(shí)間的增加而減小,隨著接觸角的減小而減小。因?yàn)槊核缑婺茉叫?,水分越容易在煤體表面鋪展。同一時(shí)刻,瓦斯壓力越大,煤水接觸角越大,煤水界面能越大,水分越不容易在煤體表面鋪展;由圖7b可知,同一瓦斯壓力條件下,煤的表面能隨著潤(rùn)濕時(shí)間的增加而增加,隨著接觸角的減小而增大。因?yàn)槊旱谋砻婺茉礁撸饺菀妆凰疂?rùn)濕。同一時(shí)刻,瓦斯壓力越大,煤水接觸角越大,煤的表面能越小,水分越不容易在煤體表面鋪展;由圖7c可知,同一瓦斯壓力條件下,黏附功隨潤(rùn)濕時(shí)間的增加而增加,隨著接觸角的減小而增大。黏附功越大,越容易被水潤(rùn)濕。同一時(shí)刻,瓦斯壓力越大,煤水接觸角越大,黏附功越小,水分越不容易在煤體表面鋪展。因此,降低瓦斯壓力及延長(zhǎng)潤(rùn)濕時(shí)間有助于減小煤水界面能、增加煤的表面能及增加黏附功,進(jìn)而有助于提高水對(duì)煤的潤(rùn)濕效果。因此,采用煤層注水措施治理瓦斯及預(yù)濕減塵時(shí),應(yīng)給予煤體充分的潤(rùn)濕時(shí)間。
3.3水滴在含瓦斯煤表面的演化特性
水滴與含瓦斯煤表面接觸后,水分逐漸浸潤(rùn)含瓦斯煤表面。采用開(kāi)發(fā)的水滴輪廓線(xiàn)提取軟件對(duì)不同時(shí)間及不同瓦斯壓力條件下的水滴輪廓進(jìn)行提取,提取后的水滴輪廓如圖8所示。
圖8不同時(shí)間及不同瓦斯壓力條件下的水滴輪廓
由圖8可知,在一定的瓦斯壓力條件下,隨著時(shí)間的增加,水滴逐漸趨向于扁平,水滴與含瓦斯煤的接觸面寬度逐漸增加,即潤(rùn)濕的寬度逐漸增加,水滴的高度逐漸減小。通過(guò)圖8可以獲得,不同瓦斯壓力、不同時(shí)間水滴輪廓最高點(diǎn)的坐標(biāo),將不同瓦斯壓力、不同時(shí)間水滴輪廓的最高點(diǎn)與不同瓦斯壓力、初始時(shí)刻水滴輪廓的最高點(diǎn)做差,可以獲得水滴輪廓最高點(diǎn)隨時(shí)間的演化規(guī)律(圖9a)。通過(guò)圖8可以獲得不同瓦斯壓力、不同時(shí)間水滴與含瓦斯煤接觸面的寬度,采用不同瓦斯壓力、不同時(shí)間水滴與含瓦斯煤接觸面的寬度減去不同瓦斯壓力、初始時(shí)刻水滴與含瓦斯煤接觸面的寬度,即可獲得水滴與含瓦斯煤接觸面的寬度演化規(guī)律(圖9b)。
圖9水滴輪廓最高點(diǎn)及水滴與含瓦斯煤接觸面的寬度演化規(guī)律
由圖9a可知,同一瓦斯壓力條件下,水滴輪廓最高點(diǎn)下降的高度逐漸增加,然而增加的速率逐漸減小,其主要是因?yàn)樗衷诿褐锌紫读鲃?dòng)所受的黏滯力所致。同一時(shí)間,瓦斯壓力越大,水滴輪廓最高點(diǎn)下降的高度越小。由前述分析可知,瓦斯壓力越大,水分對(duì)煤體潤(rùn)濕的難度越大,水分越難浸潤(rùn)含瓦斯煤體,因此呈現(xiàn)出瓦斯壓力越大,水滴輪廓最高點(diǎn)下降的高度越小的規(guī)律。由圖9b可知,同一瓦斯壓力條件下,水滴與含瓦斯煤接觸面的寬度逐漸增加,然而增加的速率逐漸減小,其主要也是因?yàn)樗衷诿褐锌紫读鲃?dòng)所受的黏滯力所致。同一時(shí)間,瓦斯壓力越大,水滴與含瓦斯煤接觸面寬度增加的越小,其說(shuō)明瓦斯壓力越高,水分越不容易在含瓦斯煤表面鋪展。水滴與含瓦斯煤表面的接觸是一個(gè)動(dòng)態(tài)潤(rùn)濕的過(guò)程,基于對(duì)圖9a—圖9b的分析可知,瓦斯壓力的增加一方面不利于水分浸潤(rùn)到煤體中,另一方面不利于水分對(duì)煤體表面潤(rùn)濕范圍的增加。