国产精品99久久99久久久动漫,国产麻传媒精品国产AV,亚洲av无码一区二区三区在线观看 ,日韩精品无码一区二区三区

芬蘭Kibron專注表面張力儀測(cè)量技術(shù),快速精準(zhǔn)測(cè)量動(dòng)靜態(tài)表面張力

熱線:021-66110810,56056830,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟(jì)大學(xué)

同濟(jì)大學(xué)

聯(lián)合大學(xué).jpg

聯(lián)合大學(xué)

寶潔公司

美國(guó)保潔

強(qiáng)生=

美國(guó)強(qiáng)生

瑞士羅氏

瑞士羅氏

當(dāng)前位置首頁(yè) > 新聞中心

硝酸酯類含能粘合劑PNIMMO及推進(jìn)劑組分的表面張力、界面作用

來源:兵器裝備工程學(xué)報(bào) 瀏覽 375 次 發(fā)布時(shí)間:2024-10-08

粘合劑是一類在固體推進(jìn)劑中起粘結(jié)及承載組分作用,并使藥柱具有一定機(jī)械性能的高聚物。隨著未來推進(jìn)劑系統(tǒng)對(duì)能量提出更高的要求,相較于傳統(tǒng)惰性粘合劑(如HTPB等),含能粘合劑因其自身具有較高的能量,能降低推進(jìn)劑配方的能量損失,而成為目前固體推進(jìn)劑發(fā)展中的研究重點(diǎn)。聚3——硝酸酯甲基——3——甲基氧雜環(huán)丁烷(PNIMMO)是硝酸酯類含能粘合劑的代表之一,具有熱穩(wěn)定良好、黏度低、玻璃化轉(zhuǎn)變溫度低、與常用增塑劑相容性較好、力學(xué)性能優(yōu)異等優(yōu)點(diǎn)而受到關(guān)注;此外,在加熱條件下,PNIMMO與異氰酸酯反應(yīng)固化制得的聚氨酯膠片不存在老化降解問題。目前,國(guó)外已將PNIMMO應(yīng)用于高能低易損性(HELOVA)發(fā)射藥的配方中,效果優(yōu)異,具有良好的應(yīng)用前景。

粘合劑在推進(jìn)劑中應(yīng)用時(shí),粘合劑與固體填料間易出現(xiàn)“脫濕”、浸潤(rùn)性差等問題,將會(huì)直接影響推進(jìn)劑的力學(xué)性能,導(dǎo)致推進(jìn)劑無法正常使用。Wang等采用單軸、雙軸2種拉伸實(shí)驗(yàn)研究了在不同條件下固體推進(jìn)劑的力學(xué)性能,發(fā)現(xiàn)在低應(yīng)變速率條件下推進(jìn)劑會(huì)由于“脫濕”而導(dǎo)致其失效。張?chǎng)蔚壤梅聪鄽庀嗌V法、接觸角法結(jié)合分子動(dòng)力學(xué)研究了粘合劑體系與炸藥間相互作用,發(fā)現(xiàn)在相同拉伸條件下,GAP/ε——Cl——20比PEG/β——HMX更易“脫濕”產(chǎn)生界面裂縫,顯著影響其推進(jìn)劑的力學(xué)性能。目前,國(guó)內(nèi)外對(duì)PNIMMO的研究主要集中在PNIMMO的制備及表征等方面。例如,莫洪昌等研究了PNIMMO的合成最佳反應(yīng)條件,發(fā)現(xiàn)合成的PNIMMO與N——100固化后的膠片力學(xué)性能優(yōu)良。王曉川等合成了三嵌段PNIMMO——PCL——PNIM——MO含能粘合劑,對(duì)其進(jìn)行性能表征發(fā)現(xiàn)可以降低PNIMMO玻璃化轉(zhuǎn)變溫度。然而,關(guān)于PNIMMO與推進(jìn)劑常用組分間界面作用的相關(guān)研究尚鮮有報(bào)道,而研究PNIMMO與推進(jìn)劑組分間的粘結(jié)狀況對(duì)推進(jìn)劑力學(xué)性能的影響具有重要意義。針對(duì)上述問題,本文中以PNIMMO及推進(jìn)劑常用組分黑索金(RDX)、奧克托今(HMX)、鋁粉(Al)、高氯酸銨(AP)為研究對(duì)象,采用接觸角測(cè)量?jī)x對(duì)其表界面性能進(jìn)行了表征,測(cè)試了各組分與不同溶劑的接觸角,計(jì)算了表面張力、界面張力和黏附功并基于上述研究結(jié)果推測(cè)了PNIMMO與典型推進(jìn)劑組分的粘結(jié)作用及機(jī)理,期望為PNIMMO在固體推進(jìn)劑中的應(yīng)用提供一定理論支撐。

1、實(shí)驗(yàn)部分

1.1、實(shí)驗(yàn)試劑及儀器

實(shí)驗(yàn)試劑:PNIMMO(工業(yè)級(jí)【Mn(相對(duì)分子質(zhì)量)=4747],西安近代化學(xué)研究所);HMX(60——70μm)、RDX(30——50μm)工業(yè)品,甘肅銀光化工集團(tuán)有限公司;高氯酸銨(AP,粒度20——30μm)、Al(粒度40μm)、甘油、乙二醇、乙醇、乙酸乙酯、甲酰胺、丙酮,工業(yè)級(jí),市售;去離子水,自制。實(shí)驗(yàn)儀器:OCA200接觸角測(cè)量?jī)x,德國(guó)Dataphysics公司;YP——15手動(dòng)粉末壓片機(jī),天津中世沃克科技發(fā)展有限公司;AHX——871安全烘箱,南京理工大學(xué)機(jī)電廠。

1.2實(shí)驗(yàn)原理

分子間的相互作用會(huì)使固體試樣的表面產(chǎn)生表面張力。


接觸角法屬于熱力學(xué)方法,以浸潤(rùn)理論為基礎(chǔ),當(dāng)液體與固體填料表面接觸時(shí)達(dá)到浸潤(rùn)平衡。YoungT以一種液體附著在另一種固體上作用力平衡為前提條件,提出了著名的楊氏方程

1.3、實(shí)驗(yàn)步驟

用長(zhǎng)24mm、厚15mm的載波片表面及3邊均勻粘取PNIMMO樣品,在室溫下放置72h,待其表面形成光滑薄膜。分別取少量充分干燥后的RDX、HMX、AP和Al粉,采用粉末壓片機(jī)直徑13mm的模具壓片。選擇3——5種與待測(cè)樣品不互溶,具有一定浸潤(rùn)效果且極性有差異的溶劑作為參比液。采用OCA200接觸角測(cè)量?jī)x測(cè)量PNIMMO、RDX、HMX、AP和Al的與不同溶劑的接觸角θ.本文中接觸角θ均為3次平行實(shí)驗(yàn)取平均值。

2、結(jié)果與討論

2.1、PNIMMO及推進(jìn)劑組分與不同溶劑間的接觸角

接觸角θ值代表固液界面間浸濕程度的好壞。當(dāng)θ<90°時(shí)固體是親液型,且θ值越小液體的浸濕性越好;反之,θ>90°則表示固體是憎液型,且θ值越大液體浸濕性越差。圖2是采用靜滴法測(cè)試的PNIMMO與3種不同溶劑的接觸角,發(fā)現(xiàn)PNIMMO在乙二醇中接觸角最?。é?61.1°),而與水和甘油的接觸角較大,說明PNIMMO與乙二醇的浸潤(rùn)性最好。采用相同的方法測(cè)試了推進(jìn)劑組分RDX、HMX、AP、Al在不同溶劑中接觸角,如表1所示,RDX與甲酰胺的浸濕性較好(θ=55.61°),而與乙酸乙酯的浸濕性略差,并且不能被水浸濕;HMX與乙酸乙酯的接觸角為0°,說明它可以完全被乙酸乙酯浸濕,而與水和甲酰胺的浸濕性均較差;Al粉可與乙醇完全浸濕(θ=0°),與乙酸乙酯浸濕性較好,但與甲酰胺浸濕性相對(duì)較差;AP均可被甘油和乙醇完全浸濕(θ=0°),但與丙酮的浸濕性相對(duì)較差。

表1推進(jìn)劑組分和不同溶劑之間的接觸角

2.2PNIMMO及推進(jìn)劑組分的表面張力

將表1中的接觸角測(cè)試結(jié)果代入式(2)中,利用Owens——Wendt——RabelandKaelble(OWRK)擬合得到PNIMMO及推進(jìn)劑組分的表面張力,如表2所示。5種樣品的表面張力大小順序?yàn)椋害茫ˋP)>γ(RDX)>γ(HMX)>γ(PNIMMO)>γ(Al),其中PNIMMO、RDX、HMX和AP中表面張力的極性分量γp均遠(yuǎn)大于色散分量γd,說明其表面張力中極性分量貢獻(xiàn)更多;而相反Al粉表面張力中色散分量對(duì)其表面張力作主要貢獻(xiàn)。一般而言,當(dāng)粘合劑的表面張力小于推進(jìn)劑中單質(zhì)固體組分的表面張力時(shí),粘合劑才能較好地包覆于推進(jìn)劑表面。PNIMMO的表面張力為35.52mN/m,明顯小于RDX、HMX及AP的表面張力,說明PNIMMO比較容易鋪展于其他固體物質(zhì)表面。即PNIMMO對(duì)RDX、HMX和AP3種固體組分的包覆效果良好。

表2PNIMMO及推進(jìn)劑組分的表面張力

2.3、PNIMMO與推進(jìn)劑組分間的界面作用

將表2中數(shù)據(jù)代入式(4)中,可計(jì)算得出PNIMMO與RDX、HMX、Al及AP之間的界面張力值γSL.由表3所示,PNIMMO和4種推進(jìn)劑組分之間界面張力大小順序?yàn)棣肧L(PNIMMO——AP)>γSL(PNIMMO——Al)>γSL(PNIMMO——RDX)>γSL(PNIMMO——HMX)。液體與固體表面接觸,界面產(chǎn)生的力則被稱為界面張力,其值越大兩體系間浸潤(rùn)性越差。因此,PNIMMO與RDX、HMX的浸潤(rùn)性較好,而PNIMMO與Al及AP間的浸潤(rùn)性較差,所以Al粉、AP易于在該粘合劑體系中出現(xiàn)“脫濕”現(xiàn)象。

黏附功的大小決定界面上粘結(jié)作用的強(qiáng)弱,將表1、表2中數(shù)據(jù)代入式(5)中,可計(jì)算得到PNIMMO與RDX、HMX、Al及AP之間的黏附功值Wa.如表3所示,PNIMMO與4種推進(jìn)劑組分之間的黏附功大小順序?yàn)椋篧a(PNIMMO——AP)>Wa(PNIMMO——RDX)>Wa(PNIMMO——HMX)>Wa(PNIMMO——Al)。由此可知,PNIMMO與AP在界面上的粘結(jié)作用最牢固,與Al的粘結(jié)作用最弱,說明當(dāng)Al存在于PNIMMO推進(jìn)劑體系中時(shí),受力最易發(fā)生脫離。

同時(shí)考慮粘合劑與填料的界面張力與黏附功時(shí),采用黏附功與界面張力二者的比值χ(式(6)),綜合評(píng)價(jià)其界面粘結(jié)強(qiáng)度順序?yàn)镻NIMMO——HMX>PNIMMO——RDX>PNIMMO——AP>PNIMMO——Al(見表3)。χ值越大,說明粘合劑與推進(jìn)劑組分之間的界面粘結(jié)性能越好。由此可見PNIMMO與HMX間界面粘結(jié)最強(qiáng),其次是RDX,而與Al之間的界面粘結(jié)最弱。這是因?yàn)镻NIMMO與固體填料間的黏附功源于其分子間作用力。由PNIMMO的分子結(jié)構(gòu)可知,其分子中含有(—OH)基團(tuán),與RDX與HMX分子上的(—NO2)基團(tuán)產(chǎn)生氫鍵作用,即在RDX或HMX分子表面形成(—N—O?H?O)鍵和作用。此外,AP分子中的(—ClO4)基團(tuán)可提供孤電子對(duì),與PNIMMO分子中(—OH)也可形成分子間氫鍵,從而產(chǎn)生較強(qiáng)的界面作用。而PNIMMO與Al分子間沒有相應(yīng)的化學(xué)鍵作用,因而二者間的界面作用較弱。

與文獻(xiàn)中常用惰性粘合劑HTPB相比,PNIMMO與RDX、HMX的界面張力均小于HTPB與RDX(γSL=13.89mN?m-1)、HMX(γSL=16.72mN?m-1)的界面張力。因此,PNIM——MO與RDX、HMX的浸潤(rùn)性優(yōu)于HTPB,說明PNIMMO有利于提高PNIMMO/硝胺推進(jìn)劑的流變性能。此外,PNIMMO與RDX、HMX及AP的黏附功均大于HTPB與RDX(Wa=53.82mN?m-1)、HMX(Wa=58.57mN?m-1)和AP(Wa=33.55mN?m-1)的黏附功。由此可知,PNIMMO與硝胺類高能材料的粘結(jié)性優(yōu)于HTPB,有利于改善PNIMMO/硝胺推進(jìn)劑的力學(xué)性能。

表3PNIMMO與推進(jìn)劑組分的界面張力、界面黏附功及二者比值χ

3、結(jié)論

通過測(cè)試PNIMMO和4種推進(jìn)劑組分的接觸角,計(jì)算其表面張力和組分間的界面作用,得出以下主要結(jié)論:1)PNIMMO的表面張力較小,因此較容易鋪展于其他固體物質(zhì)表面,推測(cè)PNIMMO對(duì)RDX、HMX及AP這3種固體組分的包覆效果良好。2)PNIMMO和4種推進(jìn)劑組分之間的界面張力可知,PNIMMO與RDX、HMX之間的浸潤(rùn)性較好,與Al、AP的浸潤(rùn)性較差;由黏附功可知,PNIMMO與AP粘結(jié)最牢固;與Al之間的黏附作用最小。3)綜合χ值和分子間氫鍵作用機(jī)理可知,PNIMMO與HMX的界面粘結(jié)作用最強(qiáng),與Al的界面粘結(jié)作用最弱。4)PNIMMO與幾種高能材料的粘結(jié)性均優(yōu)于常用惰性粘合劑HTPB,有利于改善推進(jìn)劑的力學(xué)性能和流變性能。