合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 液態(tài)Ag-O系表面張力和表面過剩量計算、氧氣壓力和溫度的預(yù)測模型——模型(二)
> 液體界面的表面張力和界面張力的測量方法
> 變壓器油水含量降至12ppm,柴油產(chǎn)品可轉(zhuǎn)化為變壓器油基礎(chǔ)油
> 人工沖洗升級為超聲波清洗,可改善新能源電池沖壓配件的表面張力
> 氣田采出水礦化度、無機鹽濃度和泡排劑含量對界面張力的影響
> 什么是酒的掛杯現(xiàn)象?馬蘭戈尼效應(yīng)
> 懸浮床加氫工藝條件下界面張力、油品黏度模擬近似計算(一)
> 表面張力儀按測量原理分類
> 降低滌棉面料環(huán)保型低溫精練劑表面張力的方法與技術(shù)方案
> SF作為天然表面活性劑制造納米器件,大大改善疏水表面的水潤濕性
推薦新聞Info
-
> 高壓CO2對表面活性劑水溶液與原油界面張力、原油乳化的影響——結(jié)果與討論、結(jié)論
> 高壓CO2對表面活性劑水溶液與原油界面張力、原油乳化的影響——摘要、實驗部分
> 硝化纖維素塑化效果與其表面張力的變化規(guī)律
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——討論、結(jié)論
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——結(jié)果與分析
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——材料與方法
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——摘要、前言
> 嗜熱鏈球菌發(fā)酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(三)
> 嗜熱鏈球菌發(fā)酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(二)
> 嗜熱鏈球菌發(fā)酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(一)
基于石墨烯LB薄膜包裹的電化學(xué)陽極大規(guī)模制備方法
來源:電子科技大學(xué)(深圳)高等研究院 電子科技大學(xué) 瀏覽 418 次 發(fā)布時間:2024-09-23
背景技術(shù)
由于石油、天然氣等不可再生能源的衰竭,人們對可再生能源的需要日益增長,這就推動了安全、穩(wěn)定、低成本、環(huán)保的電化學(xué)儲能系統(tǒng)的發(fā)展。
在電化學(xué)儲能系統(tǒng)中,制備陽極的材料以鋅為例,鋅金屬是一種廉價、豐富的金屬,具有高體積容量(5855mAh cm-3
)和低氧化還原電位(與標(biāo)準(zhǔn)氫電極相比為-0.76V),所以認(rèn)為水系鋅離子電池(AZIB)是下一代儲能設(shè)備中最有希望的候選者。但是在實際應(yīng)用中,由于鋅負(fù)極可逆性差會對電化學(xué)性能造成很大的影響,其主要與鋅金屬的枝晶生長有關(guān)。枝晶生長的這種非均勻生長嚴(yán)重破壞了電極/電解質(zhì)界面的穩(wěn)定,加速了副反應(yīng)產(chǎn)生,最終降低了電化學(xué)性能。
針對上述枝晶生長的技術(shù)問題,目前通??刹捎美士姞?布洛杰特法(langmuir-Blodgett,LB)一步合成摻氮氧化石墨烯(NGO)人工界面膜,其在鋅箔上實現(xiàn)平行超薄界面改性層(≈120nm)來改善鋅金屬的枝晶生長。但采用上述方法,在制備過程中,由于平行的石墨烯層和氮(N)摻雜基團(tuán)的有益親鋅特性,鋅晶體會在石墨烯平面上定向均勻沉積;而又因為LB膜淀積在基片上時的附著力是依靠分子間作用力,屬于物理鍵力,因此膜的機械性能較差,并且要獲得排列整齊而且有序的LB膜,必須使材料含有兩性基團(tuán),這在一定程度上給LB成膜材料的設(shè)計帶來困難;同時,LB膜的制膜設(shè)備昂貴,并且制膜工藝技術(shù)要求很高,這對大規(guī)模制備電化學(xué)陽極造成了極大的阻礙。
因此,現(xiàn)在亟需一種簡便易行的電化學(xué)陽極大規(guī)模制備方法。
發(fā)明內(nèi)容
針對現(xiàn)有技術(shù)存在的不足,本發(fā)明提出一種基于石墨烯薄膜包裹的電化學(xué)陽極大規(guī)模制備方法,以解決現(xiàn)有技術(shù)中存在的利用LB膜大規(guī)模制備電化學(xué)陽極工藝復(fù)雜的技術(shù)問題。
實施例
本實施例提供了一種基于石墨烯薄膜包裹的電化學(xué)陽極大規(guī)模制備方法,如圖1所示,包括以下步驟:
步驟1、將多層石墨烯/初始基底復(fù)合結(jié)構(gòu)放置于蝕刻液中對初始基底進(jìn)行蝕刻,得到多層石墨烯薄膜在一些實施例中,當(dāng)初始基底為銅時,蝕刻液選用三氯化鐵FeCl3溶液或過硫酸銨(NH4)2S2O8溶液;當(dāng)初始基底為鎳、銅鎳合金時,蝕刻液選用硫酸銨(NH4)2S2O8溶液。蝕刻時間不作限定,根據(jù)初始基底的厚度設(shè)定,直至初始基底被完全蝕刻掉為止。
具體的,對于多層石墨烯/初始基底復(fù)合結(jié)構(gòu)以初始基底為銅舉例說明,實物如圖2(a)、圖2(b)所示,其截面如圖所3示;蝕刻液選用FeCl3溶液。為便于本領(lǐng)域技術(shù)人員理解,以小尺寸多層石墨烯/初始基底復(fù)合結(jié)構(gòu)的蝕刻過程進(jìn)行展示,蝕刻過程如圖4所示,從圖4可看出,得到的多層石墨烯薄膜可自懸浮于液面上。
在一些實施例中,得到的多層石墨烯薄膜為3-6層。
步驟2、將多層石墨烯薄膜通過卷動的方式轉(zhuǎn)移到清洗液中進(jìn)行漂洗
在一些實施例中,清洗液可選用去離子水、乙醇或氯仿,將多層石墨烯薄膜上殘存的蝕刻液清洗干凈,漂洗時間優(yōu)選為10分鐘。
步驟3、將目標(biāo)基底通過卷動的方式與漂洗后的多層石墨烯薄膜的上表面貼合,得到石墨烯薄膜包裹的電化學(xué)陽極在一些實施例中,目標(biāo)基底可選用鋅或鋁,用這兩種金屬制備陽極,均可以取消導(dǎo)電劑的使用,增大活性物質(zhì)的密度,進(jìn)而增加電池整體的能量密度。
在具體的實施方式中,對于上述制備方法,采用的原材料包括多層石墨烯/初始基底結(jié)構(gòu),其制備方法以CVD(化學(xué)氣相沉積法)舉例說明:
(1)將CVD設(shè)備抽至<3Pa,設(shè)備撿漏,在滿足壓升率<0.2Pa/min后往CVD設(shè)備直接充入生長氣體。
(2)往設(shè)備中充入1000:10~1000:100的C/H比例氣體,含碳?xì)怏w包括CH4和C2H2等,H2為含H2比例為10%的Ar/H2氣體,Ar作為運輸氣體,將設(shè)備從<3Pa的真空狀態(tài)變?yōu)槌籂顟B(tài)。
(3)設(shè)備充至常壓狀態(tài)后,將CVD設(shè)備在1.5小時內(nèi)從25℃升至1000℃。
(4)設(shè)備升至1000℃后開始轉(zhuǎn)動初始基底材料,初始基底材料傳動速度可以設(shè)為1mm/min~1000mm/min,直至卷對卷生長得到預(yù)設(shè)長度的多層石墨烯/初始基底結(jié)構(gòu)。在具體的方式中,初始基底材料可選用銅箔、鎳箔或不同組分比例的銅鎳合金,預(yù)設(shè)長度不小于1000米。
采用的設(shè)備如圖5所示,包括:
第一放卷輥201,第一放卷輥上卷有多層石墨烯/初始基底復(fù)合結(jié)構(gòu)401,其位置設(shè)置不作限定。
蝕刻槽101,設(shè)于第一放卷輥的下方,蝕刻槽內(nèi)裝有蝕刻液;蝕刻液的上表面與第一放卷輥底部之間的間隙不小于多層石墨烯/初始基底復(fù)合結(jié)構(gòu)的厚度。多層石墨烯/初始基底復(fù)合結(jié)構(gòu)在蝕刻槽中經(jīng)蝕刻液蝕刻掉初始基底后,得到多層石墨烯薄膜402。蝕刻槽的形狀、大小不作限定,根據(jù)需要加工的多層石墨烯薄膜長度和寬度確定。
清洗槽102,清洗槽內(nèi)裝有清洗液,漂洗多層石墨烯薄膜上殘存的蝕刻液;清洗槽的形狀、大小不作限定,根據(jù)需要加工的多層石墨烯薄膜長度和寬度確定。
第二放卷輥204,第二放卷輥上卷有目標(biāo)基底403,其位置設(shè)置不作限定。
貼合輥203,設(shè)于清洗槽的尾端上方,清洗液的上表面與貼合輥底部之間的間隙不大于多層石墨烯薄膜與目標(biāo)基底的厚度之和。當(dāng)貼合輥旋轉(zhuǎn)時,會將目標(biāo)基底卷到多層石墨烯薄膜的上表面,借助摩擦力將目標(biāo)基底與多層石墨烯薄膜貼合,得到石墨烯薄膜包裹的電化學(xué)陽極404;
收卷輥205,通過旋轉(zhuǎn)對貼合輥處得到的石墨烯薄膜包裹的電化學(xué)陽極進(jìn)行收卷,其位置設(shè)置不作限定。
對于上述設(shè)備,可通過設(shè)置放卷輥、傳送輥和收卷輥的轉(zhuǎn)速,使多層石墨烯/初始基底復(fù)合結(jié)構(gòu)在蝕刻槽中蝕刻掉初始基底,在清洗槽中完成漂洗。
在一些實施例中,為了使多層石墨烯薄膜從蝕刻槽轉(zhuǎn)移到清洗槽中的過程中更加平穩(wěn),可以增設(shè)傳送輥202,傳送輥設(shè)于蝕刻槽與清洗槽之間,通過旋轉(zhuǎn)帶動多層石墨烯薄膜向清洗槽運動。
在一些實施例中,可以增設(shè)風(fēng)干設(shè)備3,風(fēng)干設(shè)備設(shè)于貼合輥和收卷輥之間,對收卷前的石墨烯薄膜包裹的電化學(xué)陽極進(jìn)行干燥處理,吹干殘留的清洗液體。風(fēng)干設(shè)備的選用不作限定,以現(xiàn)有技術(shù)中任一可實現(xiàn)的方法實施,比如風(fēng)干機。
通過本實施例的技術(shù)方案,多層石墨烯薄膜利用自懸浮方式、通過傳送運輸后直接貼合轉(zhuǎn)移到鋅箔上,這種加工方式簡便易行,能夠輕松實現(xiàn)大規(guī)模的應(yīng)用,并且對于基底的選擇性更廣,任意有固定形狀的物體作為目標(biāo)基底均可以實現(xiàn)貼合。
在性能方面,利用自懸浮方法將多層石墨烯薄膜貼合到鋅箔上,為解決鋅離子水系電池中的鋅負(fù)極可逆性差而提出用媒介對鋅箔電極進(jìn)行覆蓋進(jìn)而對鋅離子進(jìn)行誘導(dǎo)沉積,多層石墨烯薄膜使得鋅箔表面更平整,可以降低尖端效應(yīng),避免了鋅離子在沉積過程中不均勻生長而產(chǎn)生枝晶。與現(xiàn)有的LB膜沉積相比,把CVD方法制備的多層石墨烯薄膜利用自懸浮方法轉(zhuǎn)移到鋅箔上穩(wěn)定性更強,因為其為包裹陽極的石墨烯薄膜是連續(xù)薄膜而非碎片狀的石墨烯,碎片狀的石墨烯易脫離和分離。
與現(xiàn)有技術(shù)相比,本實施例的技術(shù)方案在制備電化學(xué)陽極的過程中,不需要額外使用保護(hù)膜,利用自懸浮方法將多層石墨烯薄膜直接貼合到鋅箔上,就可以起到防治腐蝕的保護(hù)層作用。對于電池來講,因為陽極上的薄膜覆蓋物不提供容量,同時因為該多層石墨烯薄膜為3-6層、厚度僅為1~3nm,質(zhì)量輕,對于電芯質(zhì)量的增加來說幾乎可以忽略不計,不額外使用保護(hù)膜就可以提供更高單位質(zhì)量的電池容量。